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Abstract-A numerical finite difference solution is found for the problem of unsteady, laminar, forced 
convection heat transfer in a parallel plate duct with finite thermal capacity walls which interact with an 
ambient medium outside the duct. Response functions are presented for the duct wall temperature, fluid 
bulk mean temperature, and inside wall surface heat flux as a function of position down the duct and time 
for a range of the parameters involved. Comparisons are made with the zero thermal capacity wall solution 

and with quasi-steady results. 

INTRODUCTION 

TRANSIENT forced convection heat transfer in ducts 
with finite thermal energy storage capacity walls which 
exchange energy with an outside fluid is of importance 
in heat exchangers and in other engineering appli- 
cations such as jet engines. Since, in most applications, 
the wall temperature and surface heat flux of the duct 
wall are not given or known a priori, these are heat 
transfer problems of a conjugated nature. 

Siegel [I] develops an approximate integral method 
solution for the limiting case of zero thermal capacity 
duct wall the surface of which experiences a step 
change in its temperature. This corresponds to an 
infinite surface coefficient of heat transfer between the 
wall and the fluid outside of the duct. This case, with 
viscous dissipation mcluded, was considered by Lin 
and Shih [2] who used an unsteady local similarity 
method which is valid at short non-dimensional dis- 
tances from the duct entrance. Applications of the 
quasi-steady method to heat transfer in a duct with 
convection to an outside fluid are those of Tan and 
Spinner [3] for finite thermal capacity walls and of Li 
[4) for walls with negligible energy storage. Lin et al. 
[S] present a finite difference solution for the transient 
heat transfer in the zero capacity wall situation for a 
range of S which depends on the outside heat transfer 
coefficient. Steady-state forced convection in a duct 
communicating thermaily with an outside ambient 
medium and including the effects of axial conduction 
in the walls was recently dealt with by Wijeysundera 
[6]. An exact analytical solution, valid in the first time 
domain and in the transient thermal entrance region, 
has been found by Sucec [7] for a finite capacity wall 
convecting to a fluid outside the duct. 

In the present work, a finite difference solution is 
found for the unsteady heat transfer to a fluid flowing 
with a laminar, fully developed velocity profile in a 

paraIM plate channel the finite thermal capacity walls 
of which transfer energy to an outside medium 
through a constant outside heat transfer coefficient. 
Results are given for the unsteady axial variation of 
bulk mean fluid temperature, wall temperature, and 
surface heat flux for a range of ci and S which are 
measures of the wall capacity and outside surface 
coefficient, respectively. The limiting ‘no wall’ solution 
is also presented and discussed as is the simpler quasi- 
steady solution. 

ANALYSIS 

Figure 1 is a depiction of the physical situation in 
which a fluid flowing inside the duct with a steady, 
laminar, fully developed velocity profile is at an initial 
temperature T, when suddenly the outside of the par- 
allel plate duct wall is exposed to an ambient fluid at 
temperature r,. and constant surface coefficient U. 
Considered are the conditions of negligible viscous 
dissipation and axial conduction and where the trans- 
verse resistance to heat transfer within the duct wall 
of thickness b is negligible. Conditions for the validity 
of these restrictions are discussed in ref. [I 11. 

Under these conditions, the governing partial 
differential equation representing the balance of 
energy for the fluid inside the duct becomes 

Cl> 

The initial and boundary conditions for the problem 
being considered are 

r=O, x>O, O<y<R, T=T, 

x = 0, t>o, O<y<R, T3 7; (2) 
y=R, t>O, x>O dT/13y = 0. 

Next, applying the energy balance to the duct wall 
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NOMENCLATURE 

ratio of thermal energy storage capacity 
of inside fluid to that of the duct wall, 

At, Ax, Ay finite difference increment sizes 

T 

T 

TL 
u, urn 

II 

X 
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Y 
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in t, x and y 

constant in equation (18) 
thickness of duct wall 
constant in equation (18) 
matrix defined by equation (10) 
specific heats of fluid and duct wall, 
respectively 
function of the Prandtl number in 
equation (18) 
u,At/Ax 
square diagonal matrix defined by 
equation (10) 
Fourier number, at/R2 

uAt/A_$ 
heat transfer coefficient used in the 
quasi-steady analysis 
indices locating nodes in the x- and y- 
directions, respectively 
thermal conductivity of inside fluid 
(when used as a superscript, index 
which fixes time) 
Nusselt number for quasi-steady 
analysis, hR/k 

heat flux at inside surface of duct wall 
dimensionless heat flux, qR/k(T,_ - T,) 

half height of parallel plate channel 
&At/RA,t 
URjk 
LiSxAt/R’ 
time 

temperature at any position and time 
initial temperature as well as inlet fluid 
temperature 
temperature of ambient outside of duct 
local and mass average fluid velocity, 
respectively 
heat transmission coefficient between 
ambient and duct wall 
space coordinate along duct 
LX/R =u,,, 
space coordinate normal to duct 
wall 

J’lR. 

Greek symbols 
thermal diffusivity of inside fluid 
function of the Prandtl number in 
equation (18) 
mass density of inside fluid and duct 
wall, respectively 
non-dimensional time used in equation 

(18) 
L”(x> Y> t)- KI/(TL- r,) 
bulk mean fluid and wall value of 4, 
respectively 
difference between exact and quasi- 
steady solution, 4-4, 
single column matrix of 4 values of the 
nodes in the y-direction at a value of 
x and t. 

Midplone of duct 

--_----_----____--- _--- 

Moving fluid 
- u(y) 

Y 
b 

Ambient at T, ,U 

FIG. 1. Schematic of parallel plate duct. 

yields, after invoking the conjugation conditions of 
flux and temperature continuity at y = 0, the fol- 
lowing equation : 

y=O, x>O, t>O, U(T,-T)= -k 

+p,c,,wb;. (3) 

We now introduce non-dimensional variables and 
parameters, namely, 

4 = [T(~,Y>~)--TII(TL-T,)> 

F = at/R’, 

X = a.x/R2u,, 

Y = y/R, 

S.= URIk, 

and 

With these and the use of the velocity profile, the non- 
dimensional mathematical problem statement 
becomes 

WJ 
s$.3[Y- Y2,2]$= g (4) 

F=O, X>O, O<Y<l fp=o 
X=0, F>O, O<Y<l C&=0 (5) 
Y= 1, F>O, X>O &$/c?Y=O. 
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Y=O, X>O, F>O S(l-4)= -gy+f$. 

(f-5) 

Finite diSference equations 
Energy balances on small, but finite, volumes of the 

fluid flowing inside the duct and on the duct wall were 
used to develop the following implicit set of finite 

difference equations : 

j= 1 [l+AR+AS]@:‘-AR+::’ = 4:,+AS (7) 

2<j<N--1 - AF&:_‘, + [2AF+ AC, + l]&; ’ 

- AF#&‘, = &.j + Acj 41-_’ :.j (8) 

j=N - 2AF@: , + [2AF+ AC, + l]$$ ’ 

= &+Ac&?II~ (9) 

where 

AS = riSctAt/R’, 

AR = &At/RAY, 

AF = ctAt/Ay’, 

AC, = u,At/Ax. 

The consistency of the finite difference equations (7k 
(9) with the partial differential equations and mid- 
channel boundary condition, equations (4), (6), and 
the last of (5), was demonstrated by the appropriate 
Taylor expansions which give the truncation error as 

O(Ax)+ O(Ay)+ 0(At). 
In order to investigate stability of the finite differ- 

ence equations by the Matrix method, the difference 
equations (7)-(9) are rewritten as the following matrix 
equation : 

,#$+I = B-‘C&J;+B-‘4:. (10) 

The stability of the set of finite difference equations 
given in equation (10) is related to the boundedness 
of the matrices B- 'C and B- ’ (see Richtmyer and 
Morton [8]). Since these are not symmetric matrices, 
the spectral radius condition may not be an adequate 
representation of the norm of these matrices and 
hence instead, it was required that the ‘infinite’ or 
‘maximum’ norm be less than or equal to unity (see 
Mitchell [9]). Study of the infinite norms led to the 
conclusion that the norm of both the above matrices 
satisfies the inequality unconditionally. Hence, the 
finite difference equations exhibit unconditional stab- 
ility. 

Lattice refinement studies revealed the points at 
which the solution of the finite difference equation 
became independent of the various increment sizes in 
X, Y and F. The final increment sizes used depended 
upon the case being solved and on the X and F values 
of interest. The maximum number of nodes needed 
across the half height R of the duct was 193 with 
usually 97 or 49 sufficing, whereas the smallest AX 
needed was 0.0004 and the smallest value of uAt/R’ 
required 0.000625. 

“MT 30:9-1 

Some checks of the finite difference predictions vs 

available analytical solutions were also made. For the 
pure conduction phase of the transient caused by a 

step change in the wall temperature, the finite differ- 
ence calculations were compared to the exact ana- 
lytical solution as given in Siegel [1] and agreement 
within a fraction of a percent was noted for the range 
of F between 0.01 and 1.0. However, a value of 
ctAt/R’ = 0.0000625 was required to achieve agree- 
ment of 0.25% at the lowest F, F = 0.01, for the 
surface heat flux. This also explains the large dis- 
crepancy between the exact and finite difference sol- 
utions at F = 0.01 in the results of Lin et al. [5] where 

their predicted flux is in error by about 70% due to 
the use of too large a time increment, namely 
aAt/R2 = 0.01, at this low value of F. The finite differ- 
ence program was also run to the steady state for the 
case of an isothermal wall and contrasted with the 
exact analytical solution for this condition as given in 

Kays and Crawford [lo]. Complete agreement was 
found for 0.01 < X < co. A final steady-state check 
was made by comparing the finite difference cal- 
culations for steady-state heat transfer between the 
duct and the ambient for S = 1.0 with the analytical 
predictions given by Wijeysundera [6]. The com- 
parison was made for the lowest value of the wall 
axial conduction parameter, namely 10F4, which he 
reports. For values of X > 0.2, where the Nusselt 
number is essentially independent of the wall con- 
duction parameter, the agreement between the finite 
difference results and those of ref. [6] is complete. For 
lower values of X, the results of ref. [6] indicate an 
increasing dependence on the wall conduction par- 
ameter and so the present finite difference results 
gradually deviate from those of ref. [6] giving a differ- 
ence of about 3% at X = 0.01. 

Quasi-steady analysis 
In this simplest approach to unsteady convection 

problems, use is made of a constant surface coefficient 
of heat transfer, h, between the wall and the inside 
fluid. This constant h value is generally chosen as the 

one for fully developed flow past an isothermal wall 
under steady-state conditions. Energy balances on the 
wall and fluid yield the governing equations as 
follows : 

Solving equations (11) and (12) by Laplace trans- 
formations for the limiting case of negligible energy 
storage capacity of the wall relative to that of the 
inside fluid, ri -+ co, the ‘no-wall’ condition, yields 

--Nu.=‘/(Nu+S) for F< X 

(13) 
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(14) 

Equation (11) yields the bulk mean temperature as 
being 

The quasi-steady solution for the more general case 
where ti is finite is given in SUCK [7] for the first time 
domain, F < X. 

To investigate conditions under which one would 
expect the quasi-steady results to give predictions of 
high accuracy, the procedure advanced in Sucec [l I] 
was applied to the present problem, and leads to the 
following conclusions relative to the accuracy of the 
quasi-steady solution as & -+ co. & is the difference 
between the exact solution and the quasi-steady sol- 
ution 

tid--+O as S-+0 forall X,Y,F 

+d-+O as F-+cQ, all S, Y, X when F < X 
(16) 

(Pd-+O as X-+00, all S, Y,F when F > A'. 

In addition it was found that &, is not expected to 
approach zero either as X-t 0 or as F-t 0. Con- 
sideration of the quasi-steady solution function for 
& given in ref. [7] for finite LT yields the condition that 

&,+O as ci-~0 forall X,Y,F. (17) 

These conditions, (16) and (17), for expected good 
accuracy from the quasi-steady solution, will be dis- 
cussed and commented on further in the next section. 

RESULTS AND DISCUSSION 

Response curves plotted from the finite difference 
solution are presented in Figs. 2-9 for the wall tem- 
perature, &, fluid bulk mean temperature, &, and 
heat flux to the inside fluid, QW. The parameter values 
are ri = 0.10, I .O, 10.0, and cc for the storage capacity 
ratio of the inside fluid to the duct wall, and S = 2.0 
and 10.0 for the dimensionless outside surface 
coefficient. 

0.0s 
I 1 E / I , I 

0 a.2 0.4 0.6 0.8 1.0 f.2 1.4 
X 

FIG. 2. Axial and timewise variation of bulk mean fluid 
temperature. 
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FIG. 3. Axial and timewise variation of wall temperature and 
fluid bulk mean temperature. 

X 

FIG. 4. Axial and timewise variation of wall temperature. 

First, we compare the results for the limiting case 
of negligible thermal energy storage capacity of the 
wall relative to the fluid, ci + M), the ‘no wall’ solution, 
to the case of a relatively large finite value of 6 = 10.0. 
As is evident by an examination of the curves in Figs. 
24, how closely the results for ci = 10.0 are rep- 
resented by the limiting case of zi -+ co depends upon 
time, F, the value of S, and upon whether one is 
dealing with &,, & or QW. For S = 10.0, the limiting 
solution for li -+ cc would be a good approximation 
for ci > 10.0 as long as F > 0.20 whereas the same 
degree of approximation for S = 2.00 would require 
Fvalues in excess of F = 0.50. This trend of increasing 
agreement between finite ri solutions and the ci -+ u? 
solution as S increases is readily explained on a physi- 
cal basis as follows. As S gets larger, the transient 
initiated by the sudden change in the ambient tem- 
perature from r to TL comes closer to a step change 
in the wall tem~rature and reaches this condition as 
S+ w for the case considered of negligible tem- 
perature drop across the duct wall. If the wall tem- 
perature is practically step changed to a near constant 
value of TL, it is then immaterial what the wall thermal 
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FIG. 5. Axial and timewise variation of heat flux at inside 
surface. 
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FIG. 6. Axial and timewise variation of heat flux at inside 
surface. Q, occurs for X 3 2.0,0.0125, and 0.0 for ci = 0.1, 

10.0. and co, respectively. 

FIG. 

0.6- 

0.7- 

Od- 

7. Axial and timewise variation of wall temperature and 
fluid bulk mean temperature. 

capacity is since it behaves the same as if it had no 
thermal capacity. 

Where the curves for ri = 10.0 and ri --) cg virtually 
coincide in the figures, such as for F 2 0.50 in Fig. 6, 
only a single curve is shown which represents both 
values of ri. 
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FIG. 8. Axial and timewise variation of wall temperature and 
fluid bulk mean temperature. 

Next, looking at the qualitative trends in Figs. 2-4, 
7 and 8 for the wall and bulk mean temperature, C#J, 
and &, for ir = 0.1, 1.0, 10.0 and cc, it is seen that 
both 4, and & increase monotonically to their even- 
tual state distributions in X for all values of ri and S 
with ci + CC yielding the fastest transient and, because 
of the relatively large wall thermal capacity, Li = 0.10 
giving the slowest transient. For example, in Fig. 4, the 
steady-state wall temperature distribution has been 
essentially reached at all X < 1.4 at F = 1.40 when 
d -+ co, while for ri = 0.10 this same steady-state dis- 
tribution has not yet been reached even at F = 14.0. 
For a fixed value of Ei, the largest S value gives the 
fastest transient because of the decreased thermal 
resistance between the outside fluid and duct wall. 

The most significant differences in behavior between 
the B --f co and any case of finite B occur for the non- 
dimensional surface heat flux, Qw, presented in Figs. 
5, 6 and 9. Qw is also the function which exhibits the 
most complex dependency on time F and distance X, 
at least for finite values of ci. One first observes that for 
ci + co, Qw experiences a step increase to its maximum 
value right at F = 0 and then monotonically decreases 
to its eventual steady-state distribution at every X. On 
the other hand, for all finite values of 8, Q,, = 0 at 
F = 0 and then exhibits a quite complicated behavior 
after that. The reason for this quite different value of 
Qw at F = 0 is contained in the energy balance on the 
wall, equation (6). Here it is seen that as d -+ co, the 
last term vanishes and -[&$/a yl y= ,, = S[l - &]. At 
F = 0, & = 0 thus giving the Aux its maximum value. 
For a finite Li, however, the last term in equation 
(6) does not vanish and in fact exactly balances the 
S[l -&] at F = 0 so that the flux is zero. This has 
been verified analytically as well by recourse to the 
analytical solution for the flux presented in ref. [7] 
which is valid at short times in the transient thermal 
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FIG. 9. Axial and timewise variation of heat flux at inside surface. 

entrance region, two conditions which are satisfied 
everywhere as F-r 0. Looking now at the case of 
d = 1 .O and S = 2.0 in Fig. 9, when X = 0.7, it is seen 
that Q, increases from. its initial value of zero and 
reaches a maximum at some value of F beyond 0.2 
(the detailed numerical finite difference results indi- 

cate that (Q,),,, = 0.60 at F = 0.30) and then starts 
decreasing toward its eventual steady-state value. But, 
as also can be detected on the figure by looking at the 
relative positions of the curves at F = 0.5, 1.4, and 
the steady state for X = 0.7, the numerical results 
indicate that QW decreases below the steady state to a 
value of 0.4738 at F = 1.3 and then increases toward 
the steady-state value of about 0.484 at F z 2.5. An 
even greater magnitude of this effect of dropping 
below the steady-state flux and then approaching it 
from below occurs at X = 0.5. Here QW drops below 
the steady state to a value of 0.56 at P= 0.8 and 
gradually rises to the steady-state value of Q = 0.591 
at F = 2.5. This phenomenon occurs in the second 
time domain, F > (2/3)X, that is, for times greater 
than the time, (2/3)X, needed for the fastest moving 
fluid particle which was at the duct entrance at F = 0 
to reach the Xlocation of interest. The effect is caused 
by the interaction between the conduction heat trans- 
fer mode in the Y-direction and the energy being trans- 
ported by convective effects, the velocity field, in the 
X-direction, as they approach the balance between 

them which causes the storage term, ~#/a~, to be zero 
in the steady state. This particular effect was also 
seen in some of the much earlier work on unsteady 
convection involving non-conjugated problems which 
had a step change in surface temperature. In the work 
011 unsteady free convection by Siegel [12], this effect 
was noted and in another analysis of unsteady com- 
bined free and forced &onv~tion by Zeiberg and 
Mueller [13], an oscillatory approach of the flux to the 
final steady state was predicted. Analytical support 
for this phenomenon is available in Riley [14] where 
unsteady forced convection over a flat plate, when a 
step change in surface temperature occurs, is 
considered. Riley derives a result, his equation (64), 
far the dominant term for the heat flux q as it 
approaches the steady state and this expression can 
be written as 

q N B-AT ‘+cl exp [-/?,2’/3] (18) 

where 3 and A are positive constants while e, and fit 
both depend inversely on the Prandtl number. 
Although not pointed out in ref. 1141, a little analysis 
of equation (18) shows that q drops below the steady- 
state value and then gradually approaches it from 
below, the same behavior predicted by the finite 
difference solution of the present work. 

Study of Figs. 2-9 lead to the following trends with 
the non-dimensional heat transfer parameter S. 
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FIG. 10. Comparison of finite differences and quasi-steady 
predictions of the wall temperature and fluid bulk mean 

temperature. 

Higher values of S lead to higher values of both & 
and &, for all ri, F and X. The flux, QW, however, 
exhibits a more complex dependency upon S. At lower 
values of time, F, Qw is greater at higher values of S 
than it is for lower S values. At larger F, and to the 
steady state, QW is greater at lower X for the higher S, 
but is lower for higher S at the larger X values. This 
last observation is explained by realizing that near the 
steady state, all values of S for long enough ducts 
eventually raise c#+, and & to the limit 1.0. Thus, 
comparing equal length ducts for different S values, 
it is apparent that a higher S gives & closer to 1 near 
the downstream end than do the smaller S values. 
Hence, the flux must be lower in the downstream 
portion of ducts when S is large, since long enough 
ducts for any S lead to very low flux values near the 
end. 

Lastly, Fig. 10 gives some comparisons between 
the quasi-steady solution function for & and &,, 
equations (13~( 15), and the finite difference results 
for the limiting case of B -+ co. The results in the figure 
are indicative of, in general, the fairly large differences 
between the simple quasi-steady predictions of the 
dashed curves and the finite difference solution plotted 
as the solid lines. It is seen that for the bulk mean 
temperature, &,, the error in the quasi-steady solution 
first increases with time and then decreases, whereas 
the error in the wall temperature is a maximum at 

F = 0 and then continually decreases. This behavior 
occurs because the quasi-steady solution cannot 
satisfy the initial condition at the wall because of the 
finite value of Nu used in equation (11) along with 
ci + cc. Thus, from equation (13) at F = 0, the quasi- 
steady value of & at F = 0 is & = S/(Nu + S) rather 
than the actual value of zero. However, the quasi- 
steady solution for &, in equation (15), is able to 

satisfy the condition that & = 0 at F = 0 and so 
causes the error in the value of c#+ to increase and then 

eventually decrease for the quasi-steady result. It can 
also be noticed, in the results plotted for S = 2.0 in 
Fig. 10, that the value of & predicted by the quasi- 
steady solution initially is larger than the finite differ- 
ence result and then becomes smaller than the correct 
result for &, the finite difference result. This behavior 
is caused by the fact that in the quasi-steady solution, 
c$,,, starts at S/(Nu+S) instead of zero and thus, even 
with the small value of Nu used, the heat flux is initially 
greater than the actual flux leading to values of & 
greater than the actual values. As some time passes, 
however, the much larger transient Nusselt numbers 
implied by the finite difference solution quickly cause 
the quasi-steady & to be below the true values. Next, 
the general trends, exhibited by the results plotted in 
Fig. 10, which lead to good agreement between the 
quasi-steady and the finite difference solution are 
examined. As F gets large in time domain I, 
F < (2/3)X, the quasi-steady results get closer to the 
correct results. This is most easily seen by reference 
to the wall temperature results for S = 2.0. Upon 
comparison of the results for S = 10.0 to those for 
S = 2.0, we see that as S gets smaller, the quasi- 
steady predictions get better. Also, in the second time 
domain, F > (2/3)X, as X + cc, the quasi-steady pre- 
dictions become very good. All three of these trends 
regarding the accuracy of the quasi-steady results are 
the ones predicted by the analysis which led to equa- 
tion (16). The other conclusions, just after equation 

(16) with regard to the behavior as X + 0 or as F + 
0, are also confirmed by the results in Fig. 10. 

Perhaps also worth mentioning is the fact that a 
proper assessment of the quality of a quasi-steady 
solution in conjugated problems, or even non-con- 
jugated duct flow situations, cannot rest upon a com- 
parison of the quasi-steady vs the true Nusselt number 
alone. In these problems one is primarily trying to 
predict & and & in a conjugate duct flow or & in a 
non-conjugated duct flow situation and the Nusselt 
number error is not a direct measure of the error in 
& and 4,. The Nusselt number is a connection among 
&, & and QW in such a problem, yet ref. [5] alludes 
to it as the sole criterion of quasi-steady accuracy. The 
present results include situations where it was found 
that the Nusselt number error greatly exceeded the 
error in either & or & for the quasi-steady solution. 

CONCLUSION 

A finite difference solution is developed for the 
unsteady forced convection situation where a fluid 
flowing inside a duct with finite thermal capacity walls 
is subject to a step change in the temperature of an 
ambient medium outside the duct. Differences 
between the limiting ‘no-wall’ solution, ri -+ co, and 
the solution for finite capacity walls, B finite, are noted 
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and discussed. It is seen that the finite ri solutions are 
slower transients in the wall temperature, bulk mean 
fluid temperature, and wall heat flux than is the case 
for the limiting solution of ci -+ co. 

The results indicate that fairly lirge values of 6 are 
needed, certainly in excess of d = 10.0, in order that 
the solution for ri -+ co serve as an adequate approxi- 
mation for finite ri for small enough values of non- 
dimensional time F. 

Noted also is the complexity of the surface heat flux 
behavior for finite ci with QW rising from zero to a 
maximum value, then decreasing beyond the steady- 
state flux followed by a final rise to the steady state. 

Comparison of the finite difference results with 
those of a quasi-steady analysis indicated that fairly 
large errors could result from the quasi-steady sol- 

ution. 
An analysis was carried out to determine the con- 

ditions under which one would expect the quasi- 
steady results to approach the true solution to the 
problem. The analysis indicated that coalescence of 
the two results would occur as S gets small ; as ri 

becomes smaller; as F gets larger in the first time 
domain ; or as Xgets larger in the second time domain. 
The comparison of the numerical results verified these 
predicted conditions. 
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CONVECTION THERMIQUE VARIABLE, COUPLEE, FORCEE DANS UN CANAL 
AVEC CONVECTION A L’AMBIANCE 

Rbum&Une ritsolution numtrique aux diffkrences finies est appliqde au probleme de la convection 
thermique variable, laminaire, dans un canal & plans parall&les, avec des parois g capacitt thermique finie 
qui sont soumises g l’ambiance externe au canal. On prtsente des rkponses pour la tem$rature des parois, 
la temptrature moyenne du fluide, et pour le flux thermique dans la paroi en fonction de la position et du 
temps, pour un domaine consid& des paramktres. Des comparaisons sont faites aver la solution pour des 

parois & capacite nulle et avec des resultats de r&me quasi-permanent. 

GEKOPPELTER, INSTATIONARER WiiRMEAUSTAUSCH DURCH ERZWUNGENE 
KONVEKTION IN EINEM KANAL MIT KONVEKTIVER VERBINDUNG ZUR 

UMGEBUNG 

Zusammenfassung-Fiir das Problem der instationlren WBrmeiibertragung durch laminare, erzwungene 
Konvektion in einem, von parallelen Platten gebildete Kanal wurde eine numerische Lijsung nach dem 
Verfahren der Finiten-Differenzen gefunden. Die Wgnde des Kanals besitzen eine endliche Wlrmekapazitlt 
und stellen den thermischen Kontakt mit dem, den Kanal umgebenden Medium her. Fiir einen gewissen 
Parameterbereich werden die zeitlichen Verllufe und die Verllufe in Kanal-Lingsrichtung fiir folgende 
GraDen angegeben: Temperatur der Kanalwand, mittlere Fltidtemperatur im Kanal und W&me- 
stromdichte an der inneren Kanalwand. Die Ergebnisse der quasi-stationlren Betrachtung und der 
Liisung des Spezialfalls, in welchem die Wand keine Wlirmekapazitit be&t, wurden mit den Ergebnissen 

dieser Untersuchung verglichen. 

HECTAqWOHAPHbII? COI-IPIIXEHHMB KOHBEKTMBHbIfi I-IEPEHOC TEIIJIA B 
KAHAJIE C YgETOM B03AEfiCTBMI BHEIIIHER CPEabI 

AIuIoTaIuIa-%icnermo KoHeStio-pa3nocTHblM MeTonoh4 pemeHa sanasa 0 riecrauHoHapHoh4 nepeHoce 
Tenna npw BbIIiyXCaeHHOk JIaMEiHapHOk KOHBeKuAH B KaHaJIe, o6pa3osannoM napaJuIenbHbIMB NIacTB- 
nahm Kouernoii TennoeMKomB c ygeToM BJIHIIHHI( miemiiefi cpenar. IIpencrasneHbl pacnpeneneiiH* Teh4- 
nepaTypb1 CTeuoK KaHana, cpe&uie-o6aeMHofi TebtnepaTypbl XKHnKocTH B Tennoaoro noToKa Ha 
BHyTpeHHek “OBepXHOCTM CTeHKA B 3aBEKJIMOCTH OT pZKCTO~HH~ BnOJIb KaHCtJK3 W B~MeHH 53 LUIll Onp- 
nenemroro nuanasoea napaMeTpoe. IIposeneHo cpaBHeHHe c pememieM npn iiyneeoii Ten.aoehfKoCTW 

CTeHOK a KBa3HCTauHOHapHOM I%XHMe. 


